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Goal « If data is well-separated, we can Imputation with Optimal Recovery

Quantify error of downstream
processing after imputation
(instead of imputation error itself)

Background

Non-negative matrix

factorization (NMF)

« Scientists like NMF

N samples, F observations each

« Given non-negative FxN matrix
V, find non-negative factor
matrices W* (FxK) and H*
(KxN)
w Vv

x[ ]z

« W* contains K cluster
prototypes ug,...,U,
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represent a rank-1 NMF of our data
as K well-separated? cones located
in the non-negative orthant of an F-
dimensional space

" U,

2 Cones in
3-d space

A 4

The N data points are just noisy
versions of the prototypes uy,...,U,
Size of cones given by ay,...,a,
Reconstruction error of a rank-1
NMF is given by:

\WV-W*H"|| :
£ < maxsina,
IVig k

Find K cones Cluster
using data no
missing values
(fully-observed
data) Missing values
Impute using optimal recovery: e
« For v with missing values,
determine feasible source cones.
If more than one possible source
cone, just pick one
* Impute missing values with
minimax center

Feasible
Imputations

Point with one missing
observation which
belongs to cone 2

3 Well-separated means it’s easy to find clusters
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Setup

We can disregard the lengths of
the data vectors and keep only
the angle between the vector and
the prototype. Thus, an F-
dimensional cone can be viewed
as an (F-1)-dimensional ball with
radius a.

We calculate some expected
reconstruction errors in Theorems
2 and 3 based on how the points
are distributed in the ball, but in
Theorem 1, we give an upper
bound.

Theorem 1

Suppose we have N points drawn
uniformly at random from K well-
separated! cones, and points are
distributed along the radius uniformly
at random. Assume data is MCAR,
but there is at least one fully-
observed point per cluster. If we
impute using optimal recovery, and
we perform a rank-1 NMF to obtain
W#* and H*, then the reconstruction
error is

IV-W*H"|| g
Vi

< max sin a.

The error bound is the same as the
result without missing values. This is
because we are just calculating the
error of the prototypes, or “cluster
centers.”
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Minimax and Fairness

Philosopher John Rawls argues that inequalities
should only exist if they result in the worst off being
better off. In a scenario where one’s place in society
Is chosen at random (including social status and
other assets), one would prefer to land in a society
that plays by a minimax rule, where the
disadvantage of the worst off is minimized.

Future Work

How does minimax imputation impact
fairness in decision-making and clustering?



