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Goal

Quantify error of downstream 

processing after imputation 

(instead of imputation error itself)

Background

Non-negative matrix 

factorization (NMF)

• Scientists like NMF

• N samples, F observations each

• Given non-negative F×N matrix 

V, find non-negative factor 

matrices W* (F×K) and H* 

(K×N)

• W* contains K cluster 

prototypes u1,…,uk

• If data is well-separated, we can 

represent a rank-1 NMF of our data 

as K well-separated3 cones located 

in the non-negative orthant of an F-

dimensional space

• The N data points are just noisy 

versions of the prototypes u1,…,uk

• Size of cones given by α1,…,αk

• Reconstruction error of a rank-1 

NMF is given by:
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Imputation with Optimal Recovery

• Find K cones 

using data no 

missing values 

(fully-observed 

data)

• Impute using optimal recovery:

• For v with missing values, 

determine feasible source cones.

If more than one possible source 

cone, just pick one

• Impute missing values with 

minimax center

3 Well-separated means it’s easy to find clusters
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Setup

We can disregard the lengths of 

the data vectors and keep only 

the angle between the vector and 

the prototype. Thus, an F-

dimensional cone can be viewed 

as an (F-1)-dimensional ball with 

radius αk.

We calculate some expected 

reconstruction errors in Theorems 

2 and 3 based on how the points 

are distributed in the ball, but in 

Theorem 1, we give an upper 

bound. 
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Theorem 1

Suppose we have N points drawn 

uniformly at random from K well-

separated1 cones, and points are 

distributed along the radius uniformly 

at random. Assume data is MCAR, 

but there is at least one fully-

observed point per cluster. If we 

impute using optimal recovery, and 

we perform a rank-1 NMF to obtain 

W* and H*,  then the reconstruction 

error is 

∥𝑽−𝑾∗𝑯∗∥𝐹

∥𝑽∥𝐹
≤ max

𝑘
sin αk.

The error bound is the same as the 

result without missing values. This is 

because we are just calculating the 

error of the prototypes, or “cluster 

centers.”
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Future Work

How does minimax imputation impact 

fairness in decision-making and clustering?

Minimax and Fairness

Philosopher John Rawls argues that inequalities 

should only exist if they result in the worst off being 

better off. In a scenario where one’s place in society 

is chosen at random (including social status and 

other assets), one would prefer to land in a society 

that plays by a minimax rule, where the 

disadvantage of the worst off is minimized.

Illustration of optimal recovery imputation


