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Motivation
VAEs are typically applied in datasets where each data dimension has

• similar statistical type (e.g. continuous, binary, categorical, etc.),

• and similar marginal distributions.

For example, image datasets or MNIST and Fashion MNIST datasets:

However, many real-world datasets contain variables with

• different statistical types

• and different marginal properties (bi-modal, heavy-tails, skewed, etc.).

In these cases, VAE models can result in a poor fit to the data since the different
likelihood factors in the decoder will have very different contributions:

Observed data, ground truth

(1) (2) (3)

Samples from VAE

(1) (2) (3)

How can we reduce these problems in VAEs?
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Proposed approach: VAEM

New VAE model for heterogeneous Mixed-type data (VAEM) trained in two steps.

First step:

We train D marginal VAEs, one for each data dimension. We optimize the ELBOs

L(θd ,φd) =
N∑

n=1

Eqφd
(zn,d |xn,d )

[
log

pθd (xn,d |zn,d)p(zn,d)

qφd (zn,d |xn,d)

]
, d = 1, . . . ,D .

Each marginal VAE fits 1D data using a type-specific likelihood pθd (xn,d |zn,d).

The marginal encoders qφd (zn,d |xn,d) map each xn,d into a continuous latent zn,d .

All the zn,d are homogeneously distributed as p(zn,d), that is, as standard Gaussian!

Second step:

We model zn,d with an additional VAE called the dependency network. We optimize

L(ψ,λ) =
N∑

n=1

Ezn∼
∏D

d=1
qφd

(zn,d |xn,d )

{
Eqλ(hn|zn,xn)

[
log

pψ(zn|hn)p(hn)

qλ(hn|zn, xn)

]}
.

Final VAEM model obtained by combining dependency network and marginal VAEs.

The two-stage training can be shown to optimize an ELBO on the joint model.
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Final model and dealing with missing data

After the two-stage training process, the VAEM generative model is given by
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How to train with missing data?

• The marginal VAEs are trained on the data available for each dimension.
No changes needed!

• The dependency network is trained by optimizing the partial ELBO

L′(ψ,λ) =
N∑

n=1

E
z
(n)
O ∼

∏
d∈O qφd

(zn,d |xn,d )

{
E
qλ(hn|z

(n)
O , x

(n)
O )

log

[
pψ(z

(n)
O |hn)p(hn)

qλ(hn|z(n)O , x(n)
O )

]}
,

where qλ(hn|z(n)O , x(n)
O ) is a PNP partial encoder and qφd (zn,d |xn,d) are the

marginal encoders.
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Missing data imputation

How to impute missing data with VAEM?

We approximately sample from pVAEM(xU |xO) in a bottom-up and top-down way:

1 Sample zO given xO using the marginal encoders.

2 Sample h given zO and xO using the dependency network encoder.

3 Sample zU given h using the dependency network decoder.

4 Sample xU given zU using the marginal decoders.
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Assessment of data generation quality

Two evaluation settings:
• Fully observed data.
• A fraction of data missing at training time (0% to 99%) and at test time (50%).

Baselines (all with same partial encoder):
• Heterogeneous-Incomplete VAE (VAE-HI) [Nazabal et al. 2018].
• VAE and VAE with larger latent dimension.
• VAE with balanced likelihood.

Negative Log-likelihood, Fully Observed Data Negative Log-likelihood, Missing Data Setting

Observed data, ground truth

(1) (2) (3)

VAEM samples

(1) (2) (3)
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Results on sequential missing-value acquisition task

We include a supervised predictor.

Added an additional baseline, VAE-no-disc, where the supervised predictor is not used.
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