

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data mixed type data

Chao Ma, Sebastian Tschiatschek, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang

Motivation

VAEs are typically applied in datasets where each data dimension has

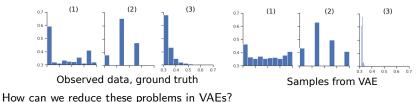
- similar statistical type (e.g. continuous, binary, categorical, etc.),
- and similar marginal distributions.

For example, image datasets or MNIST and Fashion MNIST datasets:

However, many real-world datasets contain variables with

- different statistical types
- and different marginal properties (bi-modal, heavy-tails, skewed, etc.).

In these cases, VAE models can result in a poor fit to the data since the different likelihood factors in the decoder will have very different contributions:



Proposed approach: VAEM

New VAE model for heterogeneous Mixed-type data (VAEM) trained in two steps. First step:

We train D marginal VAEs, one for each data dimension. We optimize the ELBOs

$$\mathcal{L}(\boldsymbol{\theta}_d, \boldsymbol{\phi}_d) = \sum_{n=1}^{N} \mathsf{E}_{q_{\boldsymbol{\phi}_d}(\boldsymbol{z}_{n,d} | \boldsymbol{x}_{n,d})} \left[\log \frac{\boldsymbol{p}_{\boldsymbol{\theta}_d}(\boldsymbol{x}_{n,d} | \boldsymbol{z}_{n,d}) \boldsymbol{p}(\boldsymbol{z}_{n,d})}{q_{\boldsymbol{\phi}_d}(\boldsymbol{z}_{n,d} | \boldsymbol{x}_{n,d})} \right], \quad d = 1, \dots, D.$$

Each marginal VAE fits **1D data** using a **type-specific likelihood** $p_{\theta_d}(x_{n,d}|z_{n,d})$.

The marginal encoders $q_{\phi_d}(z_{n,d}|x_{n,d})$ map each $x_{n,d}$ into a continuous latent $z_{n,d}$.

All the $z_{n,d}$ are homogeneously distributed as $p(z_{n,d})$, that is, as standard Gaussian! Second step:

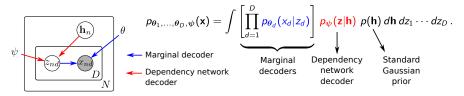
We model $z_{n,d}$ with an additional VAE called the **dependency network**. We optimize

$$\mathcal{L}(\boldsymbol{\psi},\boldsymbol{\lambda}) = \sum_{n=1}^{N} \mathsf{E}_{\mathsf{z}_{n} \sim \prod_{d=1}^{D} q_{\boldsymbol{\phi}_{d}}(\boldsymbol{z}_{n,d} | \mathsf{x}_{n,d})} \left\{ \mathsf{E}_{q_{\boldsymbol{\lambda}}(\boldsymbol{\mathfrak{h}}_{n} | \boldsymbol{z}_{n}, \mathsf{x}_{n})} \left[\log \frac{p_{\boldsymbol{\psi}}(\boldsymbol{z}_{n} | \boldsymbol{\mathfrak{h}}_{n}) \rho(\boldsymbol{\mathfrak{h}}_{n})}{q_{\boldsymbol{\lambda}}(\boldsymbol{\mathfrak{h}}_{n} | \boldsymbol{z}_{n}, \mathsf{x}_{n})} \right] \right\} \ .$$

Final VAEM model obtained by combining dependency network and marginal VAEs. The two-stage training can be shown to optimize an **ELBO on the joint model**.

Final model and dealing with missing data

After the two-stage training process, the VAEM generative model is given by



How to train with missing data?

- The marginal VAEs are trained on the data available for each dimension. No changes needed!
- The dependency network is trained by optimizing the partial ELBO

$$\mathcal{L}'(\boldsymbol{\psi},\boldsymbol{\lambda}) = \sum_{n=1}^{N} \mathsf{E}_{\mathsf{z}_{\mathcal{O}}^{(n)} \sim \prod_{d \in \mathcal{O}} q_{\boldsymbol{\phi}_{d}}(\boldsymbol{z}_{n,d} | \boldsymbol{x}_{n,d})} \left\{ \mathsf{E}_{\boldsymbol{q}_{\boldsymbol{\lambda}}(\boldsymbol{\mathsf{h}}_{n} | \boldsymbol{\mathsf{z}}_{\mathcal{O}}^{(n)}, \boldsymbol{\mathsf{x}}_{\mathcal{O}}^{(n)})} \log \left[\frac{p_{\boldsymbol{\psi}}(\boldsymbol{z}_{\mathcal{O}}^{(n)} | \boldsymbol{\mathsf{h}}_{n}) p(\boldsymbol{\mathsf{h}}_{n})}{\boldsymbol{q}_{\boldsymbol{\lambda}}(\boldsymbol{\mathsf{h}}_{n} | \boldsymbol{\mathsf{z}}_{\mathcal{O}}^{(n)}, \boldsymbol{\mathsf{x}}_{\mathcal{O}}^{(n)})} \right] \right\} \,,$$

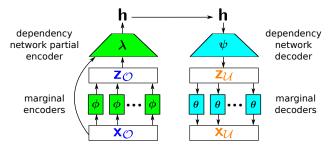
where $q_{\lambda}(\mathbf{h}_n | \mathbf{z}_{\mathcal{O}}^{(n)}, \mathbf{x}_{\mathcal{O}}^{(n)})$ is a PNP partial encoder and $q_{\phi_d}(z_{n,d} | x_{n,d})$ are the marginal encoders.

Missing data imputation

How to impute missing data with VAEM?

We approximately sample from $p_{VAEM}(\mathbf{x}_{\mathcal{U}} | \mathbf{x}_{\mathcal{O}})$ in a bottom-up and top-down way:

- **1** Sample $z_{\mathcal{O}}$ given $x_{\mathcal{O}}$ using the marginal encoders.
- **2** Sample **h** given $z_{\mathcal{O}}$ and $x_{\mathcal{O}}$ using the dependency network encoder.
- **3** Sample $z_{\mathcal{U}}$ given **h** using the dependency network decoder.
- **4** Sample $\mathbf{x}_{\mathcal{U}}$ given $\mathbf{z}_{\mathcal{U}}$ using the marginal decoders.



Assessment of data generation quality

Two evaluation settings:

- Fully observed data.
- A fraction of data missing at training time (0% to 99%) and at test time (50%).

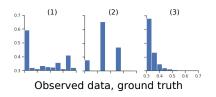
Baselines (all with same partial encoder):

- Heterogeneous-Incomplete VAE (VAE-HI) [Nazabal et al. 2018].
- VAE and VAE with larger latent dimension.
- VAE with balanced likelihood.

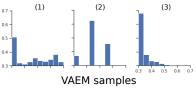
Negative Log-likelihood, Fully Observed Data

Negative Log-likelihood, Missing Data Setting

Method	VAEM (Ours)	VAE	VAE- balanced	VAE- extended	VAE-HI
Bank	-1.15±.09	$2.09 {\pm}.04$	$0.72 {\pm}.01$	$2.06 {\pm}.00$	$-0.72 \pm .00$
Boston	$-2.16 \pm .01$	$-1.69 \pm .01$	$0.38 {\pm}.01$	$-1.61 \pm .02$	$2.11 \pm .01$
Avocado	$-0.16 \pm .00$	$0.04 {\pm}.00$	$1.32 \pm .01$	$0.04 {\pm}.00$	$0.04 {\pm} .00$
Energy	$-1.28 \pm .09$	$-1.47 \pm .07$	$0.69 {\pm} .02$	$-1.46 \pm .08$	$0.16 {\pm}.00$
MIMIC	$-1.01 \pm .00$	$0.08 {\pm} .00$	$0.69 {\pm} .00$	$0.08 {\pm}.00$	$0.08 {\pm} .00$
Avg. Rank	1.40±.36	$2.60 \pm .61$	$4.40 \pm .36$	$3.00 \pm .40$	$3.00 \pm .57$



Method	VAEM	VAE	VAE-	VAE-	VAE-HI
	(Ours)		balanced	extended	
Bank	-1.21±.12	$2.09 {\pm} .00$	$0.68 {\pm}.00$	$2.09 {\pm} .00$	$-0.83 \pm .01$
Boston	$-2.18 \pm .03$	$-1.66 \pm .02$	$0.37 {\pm} .00$	$-1.67 \pm .01$	$1.58 {\pm}.01$
Avocado	$-0.15 {\pm}.00$	$0.04 {\pm}.00$	$1.33 {\pm}.00$	$0.04 {\pm}.00$	$0.04 {\pm}.00$
Energy	$-1.30 \pm .05$	$-1.50 \pm .06$	$0.67 {\pm}.01$	$-1.50 \pm .06$	$0.13 {\pm}.00$
MIMIC	$-1.10 \pm .00$	$0.08 {\pm}.00$	$0.57 {\pm}.00$	$0.08 {\pm}.00$	$0.08 {\pm}.00$
Avg. Rank	$1.40 \pm .36$	$2.60 \pm .61$	$4.40 \pm .38$	$2.30 \pm .44$	$3.00 \pm .57$



Results on sequential missing-value acquisition task

We include a supervised predictor.

Added an additional baseline, VAE-no-disc, where the supervised predictor is not used.

