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Problem setup

• The signature transform is a ’universal nonlinearity’ on the space of con nuous
vector-valued paths and has gained a en on in ML for being a powerful
feature extractor which can be easily integrated to neural networks.

• The signature acts on con nuous paths. However, in real-world applica ons,
temporal data typically appears as a discre zed collec on of observa ons.

• To apply signature techniques to this data, the data first has to be transformed
(or ”embedded”) into a con nuous path.

• This step has been typically glossed over as an unimportant detail, yet, we
hypothesize that this step could have a considerable impact on the resul ng
signature.
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Path Imputa on Strategies

Here, we study the effect of the following imputa on strategies on me series
classifiers (with or without signatures):
1. zero imputa on
2. forward filling
3. indicator imputa on
4. linear interpola on
5. causal imputa on
6. Gaussian process (GP) adapter
7. GP adapter with posterior moments (novel)
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GP adapters with posterior moments (PoM)
In addi on, we propose the following strategy which is an extension to GP adapters
that is uncertainty aware at the predic on step as opposed to the training phase:
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Results
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Figure: Results for CharacterTrajectories in terms of balanced accuracy (BAC). Missing 50%
at random (le ), label-based subsampling 40-60% (right).

• Over various datasets, imputa on schemes, and models we observed that
signature models can be dras cally affected by differing imputa ons.

• We found that GP-PoM tends to make signature models more robust
(especially shallow ones which are more affected).
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Supplementary Slides
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Paths

Defini on
A path X in Rd is a con nuous mapping from [a, b] to Rd, i.e.

X : [a, b] → Rd

t 7→ X(t)
(1)

for t ∈ R. High-dimensional paths can be decomposed into a collec on of
real-valued paths, i.e. X =

(
X1, . . . , Xd), with Xi : [a, b] → R.

We will write Xt to denote X(t).
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Path integrals

Given a func on f : R → R and a one-dimensional path X : [a, b] → R, the path
integral of X against f is defined as∫ b

a
f (X)dX =

∫ b

a
f (X(t))

dXt

dt
dt, (2)

which can be seen as a re-parametrised Riemann integral. Intui vely, it measures
how f changes as a func on of the path X.
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Path signatures

Let X be a d-dimensional path. For i ∈ {1, . . . , d}, let

S(X)i
a,t :=

∫
a<s<t

1dXi
s = Xi

t − Xi
a (3)

i.e. the increment of the ith coordinate of the path at some point t ∈ [a, b].

Notably, S(X)i
a,· : [a, b] → R is itself a real-valued path!
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Path signatures

Therefore, we can iterate this process. For i, j ∈ {1, . . . , d}, we have

S(X)
i,j
a,t :=

∫
a<s<t

S(X)i
a,s dX j

s =
∫

a<r<s<t
1dXi

r dX j
s. (4)
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Path signatures

Finally, for a collec on of indices i1, . . . ik ∈ {1, . . . , d}, with k ≥ 1, we can define

S(X)i1,...,ik
a,t :=

∫
a<s<t

S(X)
i1,...,ik−1
a,s dXik

s , (5)

:=
∫

a<tk<t
· · ·

∫
a<t1<t2

dXi1
t1

. . . dXik
tk

. (6)
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Path signatures

Defini on

The path signature, or simply the signature is the collec on of all the iterated
integrals of X, i.e.

Sig(X)a,b :=
(

1,S(X)1
a,b, . . . S(X)d

a,b,S(X)1,1
a,b ,S(X)1,2

a,b , . . . S(X)d,d
a,b , . . .

)
, (7)

for which all superscripts follow some ordering of mul -indices.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 11/31



Intui on behind the signature

Analy cal
Signatures are (partly) inspired by itera ve approaches for solving ODEs, such as
Picard itera ons. For example [1], consider the ODE

dy
dx

= y(x), y(0) = 1

y0(x) = 1
y1(x) = 1 +

∫ x
0 y0(t)dt = 1 + x

y2(x) = 1 +
∫ x

0 y1(t)dt = 1 + x + 1
2 x2

y3(x) = 1 +
∫ x

0 y2(t)dt = 1 + x + 1
2 x2 + 1

6 x3

yk(x) = 1 +
∫ x

0 yk−1(t)dt
...
which converges to y(x) = ex as k → ∞.
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Intui on behind the signature

Geometric
Signatures of order 1, i.e. terms of the form S i

a,b correspond to the increment of a
path. Terms of order 2, i.e. S i,j

a,b, for i 6= j, correspond to signed areas above and
below of a path.
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Proper es of the signature

Theore cal
• Uniqueness
• Universal nonlinearity
• Factorial decay of higher-order terms

Prac cal
• The truncated signature (up to order k) captures

therefore most of the available informa on.
• Can be computed with tensor opera ons alone.
• The signature of concatenated paths can be

computed efficiently.

Kidger et al.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 14/31



Proper es of the signature

Theore cal
• Uniqueness
• Universal nonlinearity
• Factorial decay of higher-order terms

Prac cal
• The truncated signature (up to order k) captures

therefore most of the available informa on.
• Can be computed with tensor opera ons alone.
• The signature of concatenated paths can be

computed efficiently.

Kidger et al.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 14/31



Proper es of the signature

Theore cal
• Uniqueness
• Universal nonlinearity
• Factorial decay of higher-order terms

Prac cal
• The truncated signature (up to order k) captures

therefore most of the available informa on.
• Can be computed with tensor opera ons alone.
• The signature of concatenated paths can be

computed efficiently.

Kidger et al.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 14/31



Proper es of the signature

Theore cal
• Uniqueness
• Universal nonlinearity
• Factorial decay of higher-order terms

Prac cal
• The truncated signature (up to order k) captures

therefore most of the available informa on.
• Can be computed with tensor opera ons alone.
• The signature of concatenated paths can be

computed efficiently.

Kidger et al.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 14/31



Proper es of the signature

Theore cal
• Uniqueness
• Universal nonlinearity
• Factorial decay of higher-order terms

Prac cal
• The truncated signature (up to order k) captures

therefore most of the available informa on.
• Can be computed with tensor opera ons alone.
• The signature of concatenated paths can be

computed efficiently.

Kidger et al.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 14/31



Proper es of the signature

Theore cal
• Uniqueness
• Universal nonlinearity
• Factorial decay of higher-order terms

Prac cal
• The truncated signature (up to order k) captures

therefore most of the available informa on.
• Can be computed with tensor opera ons alone.
• The signature of concatenated paths can be

computed efficiently.

Kidger et al.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 14/31



RelatedWorks
Path Signature in Machine Learning

• A Primer on Signatures for Machine Learning [1]
• Gaussian Processes with signature kernels [2]
• Signatures for Sepsis Predic on [3]
• Deep Signature Transforms [4]: ”Signature Layer” inside a neural network.
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Further Details on Experimental Setup
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Imputa on strategies

In total, we have 7 imputa on strategies:
1. zero imputa on
2. forward filling
3. indicator imputa on
4. linear interpola on
5. causal imputa on
6. GP adapter (monte carlo)
7. GP adapter (PoM)
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Models

We compare the following four models:
1. Sig: a simple MLP which employs one signature layer.
2. RNNSig: a GRU that slides over a window-based stream of signatures
3. RNN: a conven onal GRU model [5]
4. DeepSig: a deeper network employing 2 signature layers [4]
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Datasets
We make use of four real-world me series datasets: Physionet2012 challenge [6],
PenDigits [7], LSST [8], and CharacterTrajectories [7].

Preprocessing
To challenge signature models, we subsample me series which are not irregularly
observed in the first place. To this end two subsampling schemes are employed:
• ”Random”: missing at random. 50% of observa ons (PenDigits: 30%)
• ”Label-based”: missing not at random: [40 - 60%], uniformly sampled per class,
(PenDigits: [20 - 40%])
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Training
For each se ng in [imputa ons × models × datasets (× subsamplings) ]

→ run hyperparameter search (20 fits in a randomized search)
→ per fit: train un l convergence (pa ence = 20) or at most 100 epochs

Per se ng, select the best hyperparameter configura on in terms of performance
on the valida on split.

Evalua on
• For binary classifca on: average precision
• For mul -class classifica on: balanced accuracy

For each best se ng, we refit 5 repe ons and report the test measures with error
bars.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 20/31



Training
For each se ng in [imputa ons × models × datasets (× subsamplings) ]

→ run hyperparameter search (20 fits in a randomized search)
→ per fit: train un l convergence (pa ence = 20) or at most 100 epochs

Per se ng, select the best hyperparameter configura on in terms of performance
on the valida on split.

Evalua on
• For binary classifca on: average precision
• For mul -class classifica on: balanced accuracy

For each best se ng, we refit 5 repe ons and report the test measures with error
bars.

Path Imputa on Strategies for Signature Models Michael Moor, Max Horn, Chris an Bock, Karsten Borgwardt, Bas an Rieck 17th July 2020 20/31



Results
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(a) CharacterTrajectories-R
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Results II
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Results III
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Results IV
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Conclusions

• Imputa on strategies dras cally affect the performance of signature-based
models; we observe this most prominently in shallow signature models.

• Uncertainty-aware approaches tend to fair best, whereas uncertainty
informa on has to be accessible during predic on.

• GP-PoM, our proposed end-to-end imputa on strategy shows compe ve
performance, while considerably improving upon the exis ng monte-carlo
approach.

• Among signature models, we observe that deep signature models are most
robust in tackling irregular me series over different imputa ons (comparable
to non-signature RNNs, yet more paramater-efficient).
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GP adapters I
LetW ,H refer to the weight space and hyperparameter space, respec vely. Let
ℓ : Y × Y → [0, ∞) be a loss func on. Let S(X ∗) be the space of me series over
the data space including missing observa ons. Let F : X [a,b] ×W → Y , be some
(typically neural network) model. Let

µ : [a, b]× S(X ∗)×H → X
Σ : [a, b]× [a, b]× S(X ∗)×H → X

be mean and covariance func ons. The dependence on S(X ∗) is to represent
condi oning on observed values.
Then the goal is to solve

arg min
w∈W ,η∈H

N

∑
k=1

Ek︷ ︸︸ ︷
Ezk∼N (µ(·,xk ,η),Σ(·,·,xk ,η))

[
ℓ(F(zk, w), yk)

]
. (8)
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GP adapters II

As this expecta on is typically not tractable, it is es mated by Monte Carlo (MC)
sampling with S samples, i.e.

Ek ≈
1
S

S

∑
s=1

ℓ(F(zs,k, w), yk), (9)

where
zs,k ∼ N (µ( · , xk, η), Σ( · , · , xk, η)) . (10)
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Posterior moments GP adapter (GP-PoM) I

We simplify ma ers by taking the posterior variance at every point, and
concatenate it with the posterior mean at every point, to produce a path whose
evolu on describes the uncertainty at every point:

τ : [a, b]× S(X ∗)×H → X ×X
τ : t, x, η 7→ (µ(t, x, η), Σ(t, t, x, η)).

This corresponds to solving

arg min
w∈W ,η∈H

N

∑
k=1

ℓ(F(τ( · , xk, η), w), yk), (11)

where instead now
F : (X ×X )[a,b] ×W → Y .
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