## VAEs in the Presence of Missing Data

Mark Collier, Alfredo Nazabal, Christopher K.I. Williams

July 16, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Introduction

- The standard VAE formulation assumes no missing data.
- In practice many datasets have missing data.
- Current approaches to applying VAEs to missing data have many significant disadvantages.
- By assuming missing data arises from a corruption process and modelling the observed data as a conditional VAE we solve the disadvantages of the current approaches and get better empirical results.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Standard VAE Graphical Model

Standard VAE assumes fully observed data.



Figure: VAE graphical model for fully observed data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Previous Approach: Treat Missing Variables as Latents [1]

Under MCAR assumption missing elements can be integrated out of the VAE ELBO.



Figure: Missingness as latents

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Our Latent Variable Model for Missing Data I

Key idea is to think of missing data as a corruption process.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Our Latent Variable Model for Missing Data II



Figure: MCAR corruption process

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### Our Latent Variable Model for Missing Data III



Figure: MNAR corruption process

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We model the observed data as a conditional VAE, conditioned on the missingness mask  $\mathbf{m}$  and derive a corresponding VAE ELBO.

$$\log p(\mathbf{x}_o \mid \mathbf{m}) \geq \\ \mathbb{E}_{q(\mathbf{z} \mid \tilde{\mathbf{x}}, \mathbf{m})} \left[ \log p(\mathbf{x}_o \mid \mathbf{z}, \mathbf{m}) \right] - D_{\mathcal{K}\mathcal{L}}(q(\mathbf{z} \mid \tilde{\mathbf{x}}, \mathbf{m}) || p(\mathbf{z})).$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

### Advantages of Our Approach I

- The encoder network which in our approach parameterizes q(z | x, m) is conditioned on m. Thus the encoder network can distinguish between an observed data element and a missing value by looking at the corresponding element in m.
- 2. As the encoder network has access to **m** its output can change based on the missingness pattern. The encoder can approximate a non-linear parameterizarion of the exact Factor Analysis solution of learning a separate encoder network for each missingness pattern [2], while sharing the same encoder weights across all missingness patterns.
- 3. Our model applies to both **MCAR** and **MNAR** data with no change in the training objective.

## Advantages of Our Approach II

4. Our model is computationally efficient with no restrictions on the neural networks architecture used, scaling to high dimensional **x** as per standard VAEs.

# Example MNIST MCAR Reconstructions



Figure: MNIST MCAR example images. Shown are the original image, missingness mask, the corrupted image and the mean reconstructions provided by the No Ind. EO Ind. and ED Ind. methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Example SVHN MCAR Reconstructions



Figure: SVHN MCAR example images. Shown are the original image, missingness mask, the corrupted image and the mean reconstructions provided by the No Ind. EO Ind. and ED Ind. methods.

Table: MCAR/MNAR results. Each cell contains two values the metric for MCAR missingness and the metric for MNAR missingness. For each metric we conduct a paired sample t-test between the method and ED Ind. \* indicates p < 0.001.

| Method  | MNIST                                  |                                                                                 |
|---------|----------------------------------------|---------------------------------------------------------------------------------|
|         | $\log p(\mathbf{x}_o \mid \mathbf{m})$ | $\mathbb{E}_{q}\left[\log p(\mathbf{x}_{m} \mid \mathbf{z}, \mathbf{m})\right]$ |
| No Ind. | $-63.95^{*}/-64.21^{*}$                | $-64.03^{*}/-65.66^{*}$                                                         |
| EO Ind. | -63.04/-63.25                          | $-58.28^{*}/-59.09^{*}$                                                         |
| ED Ind. | -62.99/-63.23                          | -56.11/-57.01                                                                   |

Table: MCAR/MNAR results. Each cell contains two values the metric for MCAR missingness and the metric for MNAR missingness. For each metric we conduct a paired sample t-test between the method and ED Ind. \* indicates p < 0.001.

| Method  | SVHN                                   |                                                                                 |
|---------|----------------------------------------|---------------------------------------------------------------------------------|
|         | $\log p(\mathbf{x}_o \mid \mathbf{m})$ | $\mathbb{E}_{q}\left[\log p(\mathbf{x}_{m} \mid \mathbf{z}, \mathbf{m})\right]$ |
| No Ind. | $-5934.42^{*}/-5967.43^{*}$            | $-3065.70^{*}/-3074.08^{*}$                                                     |
| EO Ind. | -5853.79/-5863.37                      | $-3175.00^{*}/-3198.89^{*}$                                                     |
| ED Ind. | -5828.02/-5841.13                      | -2844.40/-2944.98                                                               |

#### References

- Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera.
  Handling incomplete heterogeneous data using vaes. arXiv preprint arXiv:1807.03653, 2018.
- Christopher KI Williams, Charlie Nash, and Alfredo Nazábal.

Autoencoders and probabilistic inference with missing data: An exact solution for the factor analysis case. *arXiv preprint arXiv:1801.03851*, 2018.